Simulation of rainbows, coronas, and glories by use of Mie theory.

نویسنده

  • Philip Laven
چکیده

Mie theory offers an exact solution to the problem of scattering of sunlight by spherical drops of water. Until recently, most applications of Mie theory to scattering of light were restricted to a single wavelength. Mie theory can now be used on modern personal computers to produce full-color simulations of atmospheric optical effects, such as rainbows, coronas, and glories. Comparison of such simulations with observations of natural glories and cloudbows is encouraging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating glories and cloudbows in color.

Glories and cloudbows are simulated in color by use of the Mie scattering theory of light upwelling from small-droplet clouds of finite optical thickness embedded in a Rayleigh scattering atmosphere. Glories are generally more distinct for clouds of droplets of as much as approximately 10 microm in radius. As droplet radius increases, the glory shrinks and becomes less prominent, whereas the cl...

متن کامل

Time domain analysis of scattering by a water droplet.

Rainbows, coronas and glories are caused by the scattering of sunlight from water droplets in the atmosphere. Although these optical phenomena are seen fairly frequently, even scientifically minded people sometimes struggle to provide explanations for their formation. This paper offers explanations of these phenomena based on numerical computations of the scattering of a 5 fs pulse of red light...

متن کامل

Visibility of stars, halos, and rainbows during solar eclipses.

The visibility of stars, planets, diffraction coronas, halos, and rainbows during the partial and total phases of a solar eclipse is studied. The limiting magnitude during various stages of the partial phase is presented. The sky radiance during totality with respect to noneclipse conditions is revisited and found to be typically 1/4000. The corresponding limiting magnitude is +3.5. At totality...

متن کامل

Atmospheric glories: simulations and observations.

Mie theory can be used to provide full-color simulations of atmospheric glories. Comparison of such simulations with images of real glories suggests that most glories are caused by spherical water droplets with radii between 4 and 25 microm. This paper also examines the appearance of glories taking into account the size of the droplets and the width of the droplet size distributions. Simulation...

متن کامل

Effects of refractive index on glories.

Atmospheric glories are caused by backscattering of sunlight from spherical droplets of water (e.g., from fog or clouds). But what would glories look like if they were caused by scattering from more exotic substances, such as clouds of ethane as found on Titan? Examining backscattering as a function of the refractive index n of spherical droplets leads to the surprising conclusion that a glory'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2003